
DSP SOFTWARE

This document describes software issues that are common to the boards containing digital
signal processors, or DSPs. The utility board (ARC-50) contains a DSP supplied by
Freescale, formerly Motorola, from the DSP56000 series. The timing (ARC-22) and PCI
interface (ARC-64 and ARC-65) boards each contain a processor from the DSP56300
series. These DSPs contain digital signal processors with a 24-bit integer data word, a 16-
bit address space, a fast ALU, a Reduced Instruction Set Computer (RISC) architecture that
executes most instructions in one clock cycle and extensive on-chip peripheral support.
These peripherals include separate address spaces for on-chip program and data memory, a
synchronous serial interface, boot logic and a simple interface to an external data bus.

BOOT AND APPLICATION SOFTWARE

Assemblers and linkers for the DSP56000 and DSP56300 series of devices can be
downloaded from "www.astro-cam.com". These were copied from Motorola several years
ago, and are available for the Sun Solaris and Windows operating systems. The Windows
version can be run on a Linux operating system by using the "wine" set of tools, available
for free download from the "www.winehq.org/site/download" site.

The timing and utility boards require a boot and an application code to operate. The boot
code initializes the DSP after reset and provides communication and memory maintenance
functions. The boot file is written to the EEPROMs on each board by a ROM burner at the
factory, and is supplied to users in the Motorola S-record format in the filenames "tim.s"
and "util.p*". A boot loader program in the DSP writes the boot code from the EEPROM to
the DSP internal memory right after power-on reset. It is intended that a typical user will
not normally need to modify this code nor write over the EEPROMs.

Application files contain software that is specific to the particular function and set of
desired tasks for each board. Application programs are transferred from the host computer
to the internal memory of the DSP, referred to as downloading the application. The timing
board application contains all the code specific to the CCD or IR array being used, such as
the serial and parallel register clocking patterns, the clocking and DC bias voltages, the
global reset code and so on. The application programs are intended to be heavily modified
by users to be optimized to their particular needs and detectors. The utility board application
code is generally pretty stable and uniform for all systems, although the user is encouraged
to tweak it at will. And, finally, the application and boot code for the PCI interface board
are joined together in one file, "pciboot.asm", and written to the DSP all at once when the
computer is powered on. Alternate PCI software may be downloaded, but this is only
required to use a different version than is already resident in the EEPROM.

GENERATING APPLICATION PROGRAMS for DOWNLOADING

Scripts executing on the host computer are used to convert source code to application files
suitable for downloading from the host computer to the controller. These scripts assemble
files with names like "timboot.asm", "tim.asm", and "timhdr.asm", then link them together
into a file with a name like "tim.lod" that is downloaded to the DSP. Relative addresses are
converted to absolute addresses by a linker, and the "tim.lod" file contains machine code

that is directly executed by the DSP, as well as timing information that is interpreted by the
controller hardware. Downloading consists of having the host computer read each word in
the "tim.lod" and write it to the DSP internal memory using the WRM command described
below.

The file "tim.lod" contains the boot program as well as the application program, and the
user must ensure that the boot program assembled with this script is identical to the one
used to generate the EEPROM on the board of interest.

BOOT COMMANDS

Several commands are executed by all the DSP boards by the boot program, as follows.
Every command must be preceded by a header ID, as described in the ARC-22 User's
Manual.

TDL number "Test Data Link". The DSP will read "number" and transmit it back to the
source in order to test functionality of the communications path.

RDM address - "Read DSP Memory". Read from internal DSP or ROM memory. The
most significant nibble of the address designates the memory space, as follows:

Bit #20 = 1 selects P: memory
Bit #21 = 1 selects X: memory
Bit #22 = 1 selects Y: memory
Bit #23 = 1 selects ROM memory

WRM address value - "Write Memory". Write "value" to internal DSP or EEPROM
memory, following the same encoding of the memory space as RDM.

A handshaking system exists to inform the sender the commands have been received and
processed. Most commands reply with a "DON" when they finish executing, though there
are exceptions to this. A timeout routine has been implemented in the command processor
that requires that all words of a command be received by the command processor within
about two milliseconds of receiving the header ID. The TIMEOUT parameter in the boot
files can be changed by the user if desired. If the number of words specified in the header is
not received in time then the words are simply discarded.

PROGRAM NOTES

Following are some notes on the programming of the controller boards. The intention is not
to be exhaustive or complete, but to be helpful with some of the subtleties of the code.

The boot program starts at the location P:START that is specified in an equate table at the
beginning of each source code file. It is chosen to be as low as possible and uses interrupt
service routine vector locations that are assigned by the DSP but unused by the particular
board. As a result a warning message is generated during assembly to the effect that illegal
instructions for interrupt service routines are being generated, and these warnings should be
ignored.

Command processing is done by having routines linked to input data devices write
incoming commands to circular buffers indexed by address registers that are permanently
allocated to that task. The address register assignment is listed after the ROM_ID table in
the source code. The circular buffers are set up to be 32 words long, which is enough to
contain typically ten commands, and resides in the Y: memory space. This allows several
commands to be sent to a given board in sequence without having to wait for each one to be
executed; they will be executed in the order in which they are received. Each input device is
assigned a separate circular buffer to prevent intermingling of commands. If a command is
not being executed then the program will scan the address register values for an increment
caused by an incoming command. As soon as one is found a consistency check is
performed to verify that its first word is a valid header. If it is correct, then the last byte is
read to determine when the complete command has been received. If there is more than one
input data source then the command is moved to a separate buffer that contains co-mingled
commands. A loop is entered to check that the entire command has been entered. Once the
command is complete the header destination number is examined to see if the command
needs to be executed by the board or passed on to another one in the chain. A table of valid
commands is examined for a match with the second word of the command. If no match is
found an "ERR" reply is returned to the source. Otherwise execution continues at the
address indicated by the command.

A reply routine, named FINISH, constructs the reply header ID by moving the source byte
to the destination byte location, tacking on the correct source byte number, and adding two
for the number of words in the reply. All replies are two words in length. The reply is added
to the circular command buffer and then processed as any other command would be.

The INIT routine is executed once by the DSP on boot up. It is overwritten by application
code downloaded from the host. As a detail, note that when application code is downloaded
the boot code is overwritten while it is being used to execute the download process with
repeated calls to the WRM command. This is why the EEPROM boot code needs to be the
same as the boot code used to assemble the download file. The INIT routine initializes DSP
control registers, sets up the circular buffers, reads in X: memory from ROM, and
initializes for the processing of interrupts. The timing board INIT routine goes on to set the
DC bias DACs with safe intermediate values in preparation for the power-up sequence

