
PCI Command Description

The PCI board is responsible for processing commands, re-directing controller
commands, transferring pixel data to the host computer, and reporting data and replies
from the controller. This document contains a description of the PCI registers and how
they are used, a description of the interaction between application, device driver, and PCI
board, and it describes the commands executed by both the 50 and 250 MHz PCI boards.

I. PCI REGISTERS
The device driver communicates with the PCI board through a series of registers lo-

cated on the PCI board. The registers are "mapped" by the device driver to produce an
equivalent set of virtual registers that the device driver can access as though it were com-
municating with the PCI board registers directly.

1) PCI CONFIGURATION REGISTERS

Every PCI board contains a set of 64 registers (DWORDS) used for configuration,
initialization, and error handling. These registers are not manipulated directly by the
user, rather they are typically used by the device driver to setup and initialize the hard-
ware. It is the Base Address Registers that are PCI board dependent and are the registers
of interest to users, as these are the driver mapped registers that are used for PCI-driver
communications. The configuration space header is shown for documentation purposes
only.

(i) Configuration Space Header
ADDRESS REGISTER

0x0000 Device Id Vendor Id
0x0004 Status Command
0x0008 Class Code Revision Id
0x000C BIST Header Type Latency Timer Cache Line Size
0x0010 Base Address Registers
0x0014
0x0018
0x001C
0x0020
0x0024
0x0028 Cardbus Pointer
0x002C Subsytem Id Subsystem Vendor Id
0x0030 Expansion ROM Base Address
0x0034 Reserved
0x0038 Reserved
0x003C Max_Lat Min_Gnt Interrupt Pin Interrupt Line

The Base Address Registers are shown in the table below. The first four are re-
served for the DSP. The next five are used by the device driver. The Host Interface Con-
trol Register (HCTR) is used for setting command and data bit sizes. The Host Interface
Satus Register (HSTR) is used for receiving replies and status information from the control-
ler and PCI board. The Host Command Vector Register (HCVR) is used to send vector
commands to the PCI board. The Reply Buffer is used to read reply data values from the

controller and PCI board. Finally, the Command Data register is used to send command
parameters and other data values to the controller and PCI board. Each register is 16-bits
and is discussed in the following sections.

Host/DSP Control and Status Registers
Address Register
0x0000 DSP Reserved
0x0004 DSP Reserved
0x0008 DSP Reserved
0x000C DSP Reserved
0x0010 Host Interface Control Register (HCTR)
0x0014 Host Interface Status Register (HSTR)
0x0018 Host Command Vector Register (HCVR)
0x001C Reply Buffer
0x0020 Command Data

a) HOST INTERFACE CONTROL REGISTER (HCTR)

Only four bits of this register are used. Bits 8, 9, 11 and 12 are used to set the PCI
bus data size for commands and replies. Setting bit 8 to 1 and bit 9 to 0 converts 32-bit
PCI commands into 24-bit DSP data. So the most significant byte (MSB) of the 32-bit
word is lost for the PCI board. Setting bit 11 to 1 and bit 12 to 0 converts 24-bit DSP re-
ply data into 32-bit PCI data. So the most significant byte (MSB) is filled with zeros for
the host computer. These bits are normally set whenever a connection to the device
driver is opened.

b) HOST INTERFACE STATUS REGISTER (HSTR)

This register communicates status information about the current state of the sys-
tem. Two bits (1, 2) are used to determine if the PCI board has data available for reading
or if the board is ready to except more commands. The DSP has an input/output FIFO
that can hold a maximum of six 16-bit words at any given time. To prevent commands
and parameters from being lost, due to a full FIFO, bit 1 is checked before sending a
command or data, and bit 2 is checked before reading a reply data value, such as the cur-
rent pixel count. If bit 1 is set, the input FIFO is empty and a command or data can be
sent. If bit 2 is set, the output FIFO is not empty and a reply data value can be read. The
bit summary is given below:

Check before sending a command or command parameter:

Bit 1 = 1 Host input FIFO is empty, can send command

 0 Host input FIFO is not empty, cannot send command

Check before reading a reply data value:

Bit 2 = 1 DSP output FIFO is not empty, can read data

 0 DSP output FIFO is empty, no data

Three bits (3, 4, 5) are used to communicate replies from both the PCI board and
the controller. The default value is 0, which would mean a timeout has occurred if the
bits are not changed to one of the other values before a specified amount of time has
elapsed. A value of 1 means the last command completed successfully. A value of 2
means the last command has generated a reply data value, which is now avaiable for read-
ing from the Reply Buffer. A value of 3 means an error has occurred and the last com-
mand has failed. A value of 4 means a system reset has occurred and may or may not be
an error, depending on the command. A value of 5 means the controller is currently read-
ing out an image and cannot be interrupted or process ascii commands. A value of 6
means the PCI board is currently busy processing a command and cannot be interrupted.
The device driver will wait for one of the other reply values to be set before returning.

Bits 3, 4, 5

= 0 TIMEOUT (Timeout)

= 1 DON (Done)

= 2 RDR (Read Reply Value)

= 3 ERR (Error)

= 4 SYR (System Reset)

= 5 READOUT (Readout)

= 6 BUSY (PCI Busy)

c) HOST COMMAND VECTOR REGISTER (HCVR)

This Host Command Vector Register (HCVR) is used to send commands to the
PCI board only. Commands sent through this resister have assigned values and do not
represent ascii characters, as do the controller commands. Vector commands generally
represent commands that must be executed immediately, thus interrupting the PCI boards
processing. The complete list of vector commands is given below.

II. NORMAL COMMANDS

These commands are the typical three character ascii commands sent in the
normal fashion.

SBS – Set Byte Swapping
This instructs the PCI board whether or not to byte swap the image data before
writing it to the host computer image buffer. This mode is set at Voodoo startup
and after a PCI lod file has been downloaded. This command is for Sun Systems
only. Replies with ‘DON’.

Usage: 0x000203 <’SBS’> <arg1>
· arg1 turns hardware byte swapping on/off

= 0 No hardware byte swapping
 = 1 Yes hardware byte swapping

TBS – Test Byte Swapping
This command asks the PCI board if hardware byte swapping is supported by the
boards firmware. If the PCI’s firmware doesn’t support byte swapping or the host
computer is not a Sun System, then the command will return a value other than
‘DON’.

Usage: 0x000202 <’TBS’>

III. VECTOR COMMANDS

These are commands that must be executed immediately. There are two types of vector
commands, maskable and non-maskable. The non-maskable commands interrupt the
DSP processor for immediate servicing. The maskable commands may or may not
immediately interrupt the processor, this is entirely up to the writer of the firmware as
to the commands importance. The complete list of these commands is defined in the
PCI assembly file “pciboot.asm”.

Vector commands are 16-bit integers that are sent to the PCI board through device
driver functions, which write the command to the PCI’s Host Command Vector
Register (HCVR). Any vector command arguments are sent before the command and
are sent through device driver functions, which write the arguments to the PCI’s
Command Data Register.

NON-MASKABLE COMMANDS

CLEAR INTERRUPT - 0x8073
This instructs the PCI board to clear any interrupts it may be sending. This
command has no arguments. Replies with ‘DON’.

READ PIXEL COUNT - 0x8075
This instructs the PCI board to write the current number of pixels, that have been
transferred to the host computer, into its reply register. This command has no
arguments. Replies with the current pixel count.

RESET PCI - 0x8077
This instructs the PCI board to reset the DSP program counter (PC) back to its
initial start position, thus “restarting” the PCI firmware. This command has no
arguments. Replies with ‘DON’.

ABORT READOUT - 0x8079
The instructs the PCI board to stop transferring pixel data and put the controller
back into idle mode. This command has no arguments. Replies with ‘DON’.

BOOT EEPROM - 0x807B
This instructs the PCI board to ?.

READ NUMBER OF FRAMES READ - 0x807D
This instructs the PCI board to write the current number of frames, that have been
transferred to the host computer, into the reply register. This command has no
arguments. Replies with the number of frames written by the PCI board.

PCI DOWNLOAD - 0x802F
This instructs the PCI board to disable command replies and enter a special mode
that allows a PCI lod file to be downloaded in a continuous stream without replies
being sent. This prevents data values such as ‘ERR’ from being interpreted as an
error reply. This command has no arguments.

MASKABLE COMMANDS

READ REPLY HEADER - 0x81
This instructs the PCI to ?.

READ REPLY VALUE - 0x83
This instructs the PCI board to write a command reply data value into the reply
register, which will then be read and passed by the device driver to the user
application. This command is only issued if the HTF reply status bits 3, 4, 5 of
the Host Interface Status Register (HSTR) are set to a value of 2, which means
“read reply” (‘RDR’). This command has no arguments.

CLEAR REPLY FLAGS - 0x85
This instructs the PCI board to set the reply flags, which are the HTF bits 3, 4, 5
of the Host Interface Status Register (HSTR), to zero, which is the default “no
reply” value. To ensure a valid response, this command should always be sent
before any command that expects a reply. This command has no arguments.
Replies with ‘DON’.

RESET CONTROLLER - 0x87
This instructs the PCI board to instruct the controller to reset itself. This
command has no arguments. Replies with ‘SYR’.

INITIALIZE IMAGE ADDRESS - 0x91
This command writes the physical address of the image buffer to the PCI board.
The address is written in two 16-bit parts, the first argument for this command is
the lower 16-bits and the second argument is the upper 16-bits.

WRITE COMMAND - 0xB1
This instructs the PCI board to read and execute all parameters that have been
written to the Command Data Register. This is the command that results in the
execution of the normal ascii commands. This command has up to six arguments,
which are the normal ascii commands and their arguments. See the “Controller
Commands” document for a description of the ascii controller commands.

IV. ACCESSING THE PCI REGISTERS

The PCI board resisters are accessed by an application through a device driver
function call, ioctl on Linux and Unix , and DeviceIoControl on Windows. Below are
the list of commands needed for an application to access four of the five PCI registers.
The Reply Buffer register cannot be directly accessed by an application.

Unix and Linux

Usage: int ioctl(int file descriptor, int command, int *arg)

Where file descriptor is the integer returned from the open() func-
tion. Command is one of the commands described below and de-
fined in astropci_ioctl.h. arg is a variable used to send parameters
and receive values associated with the execution of the specifed
command.

To access the HCVR:
A vector command is sent by first sending any optional data values, followed by
the command.
ioctl(pci_fd, ASTROPCI_HCVR_DATA, &data); [optional data value]
…
ioctl(pci_fd, ASTROPCI_SET_HCVR, &command);

To access the HCTR:
There are two functions to access the HCTR, a get and a set function. The new
value for the set function will be the new HCTR register value.
ioctl(pci_fd, ASTROPCI_GET_HCTR, &oldValue);
ioctl(pci_fd, ASTROPCI_SET_HCTR, &newValue);

To access the HSTR:
There is a single function to read the HSTR.
ioctl(pci_fd, ASTROPCI_GET_HSTR, &hstrValue);

Where the parameters are defined as:
ASTROPCI_GET_HCTR 0x1
ASTROPCI_GET_HSTR 0x4
ASTROPCI_HCVR_DATA 0x10
ASTROPCI_SET_HCTR 0x11
ASTROPCI_SET_HCVR 0x12

Windows 2000

In the first DeviceIoControl call, inBuffer contains the optional data value and
outBuffer contains any returned data value. In the second DeviceIoControl call,
inBuffer contains a valid vector command value and outBuffer contains any
returned value.

Usage: BOOL DeviceIoControl
(

 HANDLE hDevice, // handle to device of interest
 DWORD dwIoControlCode, // control code of operation to perform
 LPVOID lpInBuffer, // pointer to buffer to supply input data

 DWORD nInBufferSize, // size, in bytes, of input buffer
 LPVOID lpOutBuffer, // pointer to buffer to receive output data

DWORD nOutBufferSize, // size, in bytes, of output buffer
 LPDWORD lpBytesReturned, // pointer to variable to receive byte count
 LPOVERLAPPED lpOverlapped // pointer to struct for synchronous operation

);

To access the HCVR:
A vector command is sent by first sending any optional data values, followed by
the command.
DeviceIoControl((HANDLE)pci_fd, ASTROPCI_HCVR_DATA, &inBuffer,

 sizeof(inBuffer), &outBuffer, sizeof(outBuffer),
 &bytesReturned, NULL));

…

DeviceIoControl((HANDLE)pci_fd, ASTROPCI_SET_HCVR, &inBuffer,
 sizeof(inBuffer), &outBuffer, sizeof(outBuffer),
 &bytesReturned, NULL));

To access the HCTR:
There are two functions to access the HCTR, a get and a set function. The inBuffer
for the set function will be the new HCTR register value.
DeviceIoControl((HANDLE)pci_fd, ASTROPCI_GET_HCTR, NULL,

 0, &outBuffer, sizeof(outBuffer), &bytesReturned, NULL));
DeviceIoControl((HANDLE)pci_fd, ASTROPCI_SET_HCTR, &inBuffer,

 sizeof(inBuffer), &outBuffer, sizeof(outBuffer),
 &bytesReturned, NULL));

To access the HSTR:
There is a single function to read the HSTR.
DeviceIoControl((HANDLE)pci_fd, ASTROPCI_GET_HSTR, NULL,

 0, &outBuffer, sizeof(outBuffer), &bytesReturned, NULL));

Where the parameters are defined as:
// Device Type - arbitrary # in range: 32768 to 65535.
ASTROPCI_DEVICE 33000

ASTROPCI_GET_HCTR \
CTL_CODE(ASTROPCI_DEVICE, 0x801, METHOD_BUFFERED,

FILE_ANY_ACCESS)

ASTROPCI_GET_HSTR \
CTL_CODE(ASTROPCI_DEVICE, 0x804, METHOD_BUFFERED,

FILE_ANY_ACCESS)

ASTROPCI_HCVR_DATA \
CTL_CODE(ASTROPCI_DEVICE, 0x810, METHOD_BUFFERED,

FILE_ANY_ACCESS)

ASTROPCI_SET_HCTR \
CTL_CODE(ASTROPCI_DEVICE, 0x811, METHOD_BUFFERED,

FILE_ANY_ACCESS)

ASTROPCI_SET_HCVR \
CTL_CODE(ASTROPCI_DEVICE, 0x812, METHOD_BUFFERED,

FILE_ANY_ACCESS)

V. DOWNLOADING A PCI LOD FILE

Because the PCI board firmware contains the reply definitions, it requires a
special method for downloading lod files to prevent false errors from being reported.
First, bits 8 and 9 of the HCTR must be cleared to allow 32-bit values to be written
without loss of bytes. The 32-bit values are broken up into two 16-bit values by the DSP.
Next, the device driver command ASTROPCI_PCI_DOWNLOAD (0x13) is called. This
command merely sends the PCI_DOWNLOAD vector command to the PCI board, but
does not look for a reply, as there isn’t one. The PCI board will now be looking for a
magic number which indicates that the contents of an lod file will soon be streaming in.
The magic number is 0x00555AAA, and is written to the Command Data register via
ASTROPCI_HCVR_DATA. Finally, the contents of the lod file are written using the
Command Data register. The first two words written should be the total word count and
the start address, as read from the lod file. Only data blocks starting with “_DATA P” are
sent, all others are discarded. After the data has been written, the DSP input/output data
sizes are reset by setting bits 8 and 11 to 1 and clearing bits 9 and 12 in the HCTR. And
lastly, the device driver command ASTROPCI_DOWNLOAD_WAIT (0x14) is called.
This command will wait for the PCI board to change the HSTR reply flags from BUSY to
(hopefully) DON. To verify that the download was successful, several test data link
(TDL) commands should be sent to the PCI board. The download sequence is
summarized below.

1. Clear bits 8 and 9 of the HCTR using the ioctl commands,
ASTROPCI_GET_HCTR and ASTROPCI_SET_HCTR.

2. Send the vector command PCI_DOWNLOAD to the PCI board by calling
ASTROPCI_PCI_DOWNLOAD.

3. Send the magic number 0x00555AAA by writing it to the Command Data
register via the ioctl command ASTROPCI_HCVR_DATA.

4. Read the total word count from the lod file and write it to the Command Data
register.

5. Read the start address from the lod file and write it to the Command Data
register.

6. Send all data contained within “_DATA P” blocks via the Command Data
register.

7. Set bits 8 and 11 to 1, and clear bits 9 and 12 in the HCTR.
8. Call the device driver ioctl command ASTROPCI_DOWNLOAD_WAIT to

wait for the PCI board to complete its processing.
9. Send a few test data link (TDL) commands to verify the download.’

